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772 07 Olomouc, Czech Republic

Received: 17 February 1998 / Revised: 17 July 1998 / Accepted: 13 November 1998

Abstract. A similarity between the photon annihilation and creation operators and the Susskind-Glogower
exponential phase operators motivates the introduction and study of quasidistributions of the cosine and
sine of phase. These quasidistributions are related to the standard and antistandard orderings of trigono-
metric phase operators and to the normal, antinormal, and symmetrical orderings of the exponential phase
operators. The symmetrical ordering is connected to an optical ideal tomography of the appropriate qua-
sidistribution from the rotated Susskind-Glogower cosine operator.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements

1 Introduction

The great importance of phase angle for classical optics
does not cease to kindle the interest in the quantum phase.
Since the very beginning of quantum theory the canonical
conjugation between the action and angle variables of a
harmonic oscillator has been reinterpreted as the number-
phase canonical conjugation. Due to the difficulties with
the Hermitian phase operator it has appeared that the
probability operator-valued measure must be applied for
the description of phase measurements [1,2].

A probability operator-valued measure as a resolution
of the identity is useful for assigning probability distribu-
tions to statistical operators and also for assigning opera-
tors to classical physical quantities. The resolutions of the
identity arising through the diagonalization of the so gen-
erated operators need not coincide. Suspectedly, they may
differ from the original probability operator-valued mea-
sure. The identity resolution presented in [1,2] is usually
called the Susskind-Glogower probability operator-valued
measure. Susskind and Glogower [3] generated operators
from the classical cosine and sine of phase and showed that
the identity resolutions appropriate to the cosine and sine
operators do not coincide and differ from the Susskind-
Glogower probability operator-valued measure [4].

Independently, Garrison and Wong [5] considered an
operator which could be generated from the classical phase
angle whose range was [−π, π). Here again another resolu-
tion of the identity was described different from those for
cosine and sine operators and from the Susskind-Glogower
probability operator-valued measure.
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The phase-space methods of quantum theory have
proved valuable in the phase-space approach to the quan-
tum phase (for further details see the reviews [6–10]).
The most important methods are connected to and distin-
guished by the orderings of the photon annihilation and
creation operators and they provide at least but not only
the identity resolutions which assign quasi-probability dis-
tributions to statistical operators and generate operators
from classical physical quantities. It is possible to intro-
duce not only the marginal phase-angle resolutions of the
identity in this approach, but also the marginal action res-
olutions of the identity [11]. At present, the literature on
the relationships with the experiment is so rich and de-
voted not only to the homodyne detection proper but also
to the tomographical (reconstruction) methods that we
cannot pay our attention to this interesting topic. Whereas
the extraction of the phase information from the statisti-
cal operator is so straightforward that the comparison of
the quasidistributions resulting from different phase ap-
proaches with the Susskind-Glogower probability distri-
bution is immediate, the dual procedures of generating
operators from classical phase quantities lead to analyses
at different levels of intricacy. In the case of the antinormal
ordering of annihilation and creation field operators, the
exponential phase operators generated by the identity res-
olution have been introduced by Paul [12], whereas Turski
[13] generated the phase-angle operator. The amount of ef-
fort and the depth of analysis comparable with the prob-
lems of Susskind and Glogower and Garrison and Wong
can be found only in the work devoted to the Weyl quan-
tization of phase angle, exponential of phase, and cosine
and sine of phase [14–18].
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The statistical properties of a quantum state are actu-
ally those of the random variables whose realizations are
the eigenvalues of measured operators. In quantum optics
the only operator which can be measured directly is the
number operator and the measurement consists in photo-
counting. Some detection schemes enable one to measure a
quadrature operator and other more sophisticated ones ac-
complish simultaneous measurement of two quadratures.
Thus the realistic measurements are described by the dis-
tribution of a quadrature as well as by a quasidistribution
of two quadratures. The so-called realistic or operational
approach to the quantum phase consists in deliberate con-
finement of the physicist to its properties which are based
on the measured quadratures. Nevertheless, the success of
the Hermitian phase operator proposed by Pegg and Bar-
nett [19,20] evidences the interest in the ideal phase prop-
erties. Remarkably enough, the antinormal ordering of the
photon annihilation and creation operators, to which the
joint distribution of simultaneously measured quadratures
in a familiar detection scheme [12,21] is related, has the
antinormal ordering of the exponential phase operators
as its counterpart in the ideal case [6,22,23]. If the anti-
normal ordering of the exponential phase operators is not
considered, a violation of the trigonometric calculus occurs
[24]. In that paper the quantum statistics of the Susskind-
Glogower cosine operator have been evaluated for non-
classical states. It has been shown that for weak coherent
signals the ideal cosine distribution is closer to the ho-
modyne cosine distribution than the Susskind-Glogower
cosine distribution can be. It has also been shown that
for a coherent state with the average number of photons
of three, the Susskind-Glogower cosine distribution ap-
proaches the ideal cosine distribution, whereas the homo-
dyne cosine distribution is no more identical with any of
them. In this paper we connect the desirable properties
to the antinormal ordering, which can be used to describe
the ideal and homodyne measurements, although different
operators must be ordered.

In the sequel we will study the quasidistributions mo-
tivated by the analogy between the photon annihilation
and creation operators and the Susskind-Glogower expo-
nential phase operators. In Sections 2 and 3 we will ex-
pound the analogy between the quadrature operators and
the cosine and sine of phase operators, which consists
of a number of similarities both formal and of physical
content. In Section 4 we will define four quasidistribu-
tions for quantum cosine and sine of phase, which are
configured about the fifth, Wigner, quasidistribution for
the Susskind-Glogower cosine and sine operators. Besides
the special Wigner quasidistribution, we will pay a great
attention to the quasidistributions related to the normal
and antinormal orderings of the exponential phase opera-
tors and to the quasidistributions related to the standard
and antistandard orderings of the cosine and sine opera-
tors. We will show the dichotomy that either the cosine
and sine of phase obey the usual trigonometric relation or
their quasidistribution is in a correspondence to a phys-
ical state. We will analyze the Wigner quasidistribution
for the Susskind-Glogower cosine and sine operators in

Section 5. We will show that the Laguerre polynomials
and the Gaussian quasidistribution for the coherent state
in the case of the usual Wigner function have analogues.
These are particular Jacobi polynomials and a quasidis-
tribution in a closed form.

2 Cosine and sine operators

The comprehensive text of Dirac [25] uses without hes-
itation the eigenstates of position coordinate and mo-
mentum observables. At present, the analysis of the
optical homodyne tomography profits from the eigen-
states of quadrature operators, although they are not el-
ements of the Hilbert space whose complete basis are |n〉,
n = 0, 1, . . . ,∞, the familiar number states. The phase
states [4]

|ϕ〉 =
1
√

2π

∞∑
n=0

exp(inϕ)|n〉 (2.1)

do not belong to this Hilbert space either. They are some
of the eigenstates of the exponential phase operator,

Ê−|ϕ〉 = exp(iϕ)|ϕ〉, (2.2)

which is known to have the expansion

Ê− =
∞∑
n=0

|n〉〈n+ 1|, (2.3)

where the subscript “−” indicates that this operator
acts as a lowering operator. The expansion (2.3) is
non-diagonal as well as that of the photon annihilation
operator

â =
∞∑
n=0

√
n+ 1|n〉〈n+ 1|, (2.4)

whereas the number operator n̂ = â†â has the diagonal
expansion in the basis of its eigenstates,

n̂ =
∞∑
n=0

n|n〉〈n|. (2.5)

The photon creation operator â† has a similar expansion

as the raising operator Ê+ = Ê†−.
The phase states (2.1) have the property

Re 〈ϕ|ϕ′〉 =
1

4π
+

1

2
δ(ϕ− ϕ′)

for ϕ,ϕ′ ∈ [θ0, θ0 + 2π), (2.6)

where θ0 is any real number, and enter the resolution of
the identity,

1̂ =

∫ θ0+2π

θ0

|ϕ〉〈ϕ| dϕ. (2.7)
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The property (2.7) is sufficient for introducing phase prob-
ability densities

Pθ0(ϕ) = Tr
{
ρ̂P̂θ0(ϕ)

}
, (2.8)

where ρ̂ is the Hermitian operator describing the state of
the system and P̂θ0(ϕ) is the operator-valued density,

P̂θ0(ϕ) =

{
|ϕ〉〈ϕ| for ϕ ∈ [θ0, θ0 + 2π),

0̂ elsewhere.
(2.9)

On substituting (2.9) into (2.8), the phase probability den-
sity is explicit

Pθ0(ϕ) =

{
〈ϕ|ρ̂|ϕ〉 for ϕ ∈ [θ0, θ0 + 2π),

0 elsewhere.
(2.10)

When one neglects the conditions in the definition (2.9),
one obtains a 2π-periodic “density” from (2.8). The ques-
tions raised in this connection are treated in [26]. A few
formalisms of quantum phase converge to the canonical
phase probability density (2.8) [27,28].

Somewhat different situation occurs with respect to
the operators related to functions of classical phase. Of
course, the operators [4]

Ĉ =

∫ θ0+2π

θ0

cosϕ |ϕ〉〈ϕ| dϕ,

Ŝ =

∫ θ0+2π

θ0

sinϕ |ϕ〉〈ϕ| dϕ, (2.11)

could be useful,

Ê− = Ĉ + iŜ, (2.12)

but they do not commute and thus they cannot be simul-
taneously measured. Should other operators be generated
then using the resolution of the identity? Maybe the com-
plexity of their matrix in the number state basis decides.
The Garrison-Wong phase operator [5] is too complicated
in this respect, although it can be generated similarly as
indicated by (2.11), but the sine and cosine operators are
appropriate. When we take the exponential phase opera-
tor for related closely enough to the annihilation operator
â, in fact,

Ê− = (ââ†)−
1
2 â = (n̂+ 1̂)−

1
2 â, (2.13)

and observe that the commutator[
Ê−, Ê+

]
= |0〉〈0| (2.14)

is a projection operator, “just as” the identity operator,
[â, â†] = 1̂, and that the commutator[

Ĉ, Ŝ
]

=
i

2
|0〉〈0| (2.15)

is similar to [Re â, Im â] = (i/2)1̂, we have a basis for our
study. We accept the property (2.14) with a great deal of
optimism, although Pegg and Barnett started their work
on a new formalism with criticism of this property [19,20].
Traditionally, the attention has been focused on the com-
mutators which correspond better to the Poisson brack-
ets [29] [

n̂, Ŝ
]

= iĈ,
[
n̂, Ĉ

]
= −iŜ. (2.16)

This property is shared by the operators Re â, Im â,

[n̂, Im â] = iRe â, [n̂,Re â] = −iIm â, (2.17)

while the cosine and sine operators are distinguished by
their spectra filling the interval (−1, 1).

The well-known coherent states |α〉 are characterized
by the relation â|α〉 = α|α〉. Almost equally well-known
coherent phase states |ρeiϕ〉, 0 ≤ ρ < 1, are defined by an
analogous relation

Ê−|ρe
iϕ〉 = ρeiϕ|ρeiϕ〉. (2.18)

A rather peculiar definition as eigenstates of non-
Hermitian operators â, Ê− is illuminated by the relation-
ship to the original and generalized Heisenberg-Robertson
uncertainty relations

〈(∆Re â)2〉〈(∆Im â)2〉≥
1

16
, (2.19)

〈(∆Ĉ)2〉〈(∆Ŝ)2〉≥
1

16
[p(0)]2, (2.20)

where ∆x̂ = x̂ − 〈x̂〉, any operator x̂, and p(0) is the
probability that the measured photon number is zero. In
our case the Heisenberg uncertainty relation is very opti-
mistic, because it involves no lower bound on the uncer-
tainty product for the states, where the measured photon
number cannot be zero.

The feature (2.15) of quantum world becomes clear
cut when formulated classically using the Poisson bracket.
Normally, the attention is paid to the relation

{cosϕ, sinϕ} = 0, (2.21)

whence the interest follows in the Pegg-Barnett formalism
[19,20], where the quantization of this Poisson bracket is
accomplished, of course, with respect to canonical quan-
tization. The Susskind-Glogower operators, however, can
correspond rather to the classical quantities

C = Θ(J) cosϕ, S = Θ(J) sinϕ, (2.22)

where Θ(x) is the (Heaviside) unit-step function. The
intensity-phase conjugation reads as

{J, φ} = 1. (2.23)

Then,

{C,S} = δ(J)Θ(J), (2.24)

where δ(x) is the Dirac delta function.
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Not only {C,S} 6= 0, but its exact value passes well
the comparison with the quantum commutator (2.15), if
the product of the generalized functions is appropriately
defined. To this end we regularize δ(J) using a sequence
of even functions. In the limit we obtain that

δ(J)Θ(J) =
1

2
δ(J). (2.25)

Hence,

{C,S} =
1

2
δ(J). (2.26)

Because the canonical quantization is accomplished with
a correspondence

{C,S} ↔ −
i

~
[Ĉ, Ŝ], (2.27)

we observe that we rely on the correspondence

δ(J)↔
1

~
|0〉〈0|, (2.28)

which is acceptable. It is easy to see that the quantities C
and S have the usual Poisson brackets,

{J, S} = C, {J,C} = −S. (2.29)

Let us remark that a more detailed inspection can relate
the constant term in (2.6) to the photon vacuum. Pegg
and Barnett and other authors have observed that the
Susskind-Glogower formalism in Lévy-Leblond’s scheme
[30] is not then able to determine the statistical properties
of the vacuum correctly [8].

3 Cosine and sine eigenstates

The homodyne detection can in principle measure oscil-
lating distributions of a field quadrature. When a simul-
taneous measurement of two conjugate quadratures is at-
tempted, the double homodyne detection can be realized
using a 50:50 beamsplitter. Due to attenuation of the
beamsplitter, the quadrature measurement suffers from a
lower signal-to-noise ratio. In fact, fundamental analyses
of the heterodyne and double heterodyne detections show
that the quantum probability density oscillations of quan-
tum origin are lost. Interestingly enough, the Susskind-
Glogower cosine and sine probability densities can os-
cillate in some important case of the field, whereas the
cosine and sine distributions determined via the formalism
of canonical quantum phase [6] lack of these oscillations.
The canonical phase measurement can be interpreted as a
simultaneous measurement of the cosine and sine of phase.

In quantum mechanics, the operators whose quantum
Poisson bracket is equal to unity are called canonically
conjugate. Particularly, in the case of finite dimensional
Hilbert spaces it is useful to speak of the canonical conju-
gation of observables, projection-valued measures or sim-
ply eigenkets. The position and momentum operators are

canonically conjugate and, in consequence, their eigen-
kets are also canonically conjugate. Any position (coor-
dinate) is equally probable in a momentum eigenstate to
give an example. The question arises, whether the cosine
and sine operators have a residual canonical conjugation
property such that both cosines are equally probable in a
sine eigenstate. The residual or restricted canonical con-
jugation means that we cannot speak of any cosines, but
only of the two cosines obeying the well-known trigono-
metric identity, C = ±

√
1− S2.

We will consider the trigonometric function operators

Ĉ = Re(Ê−), Ŝ = Im(Ê−) (3.1)

in analogy to the quadrature operators, the position-like
and the momentum-like one

Q̂ = 2 Re â, P̂ = 2 Im â, (3.2)

respectively. The representation of eigenstates |Q〉 of Q̂ in
the number state basis,

|Q〉 =
∞∑
n=0

〈n|Q〉|n〉, (3.3)

where

〈n|Q〉 = 〈Q|n = 0〉
1

2
n
2
√
n!
Hn

(
Q/
√

2
)
, (3.4)

comprises the Hermite polynomials (x = Q/
√

2),

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2), (3.5)

known as orthogonal polynomials with respect to the
Gaussian weight

〈Q|n = 0〉2 =
1
√

2π
exp

(
−
Q2

2

)
. (3.6)

Here the orthogonal polynomials combine with the prob-
ability density of a quadrature in the vacuum state. Let
us remember that the coefficients in the expansion (3.3)
are equal to the wave functions for the number states

〈Q|n〉 = 〈n|Q〉. (3.7)

The appropriate representation of eigenstate |P 〉 of P̂ is
derived using the property

|P 〉 = in̂|Q = P 〉. (3.8)

Let us note that the unitary operator in̂ = exp (in̂π/2)
represents the rotation of the phase space by π/2.

The states |Q〉, |P 〉 have the orthogonality property,

〈Q|Q′〉 = δ(Q−Q′), 〈P |P ′〉 = δ(P − P ′). (3.9)

From (3.9) it follows that the quadrature eigenstates can-
not be normalized. In fact, we encounter the projection-
valued densities here. By the relation (3.2) the operators
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Q̂ and Re â are distinct, and so are the systems of the
eigenvectors. To compare them, one does not only make
the substitution of the eigenvalue, but also multiplies the
density |Q〉〈Q| by two, to respect a higher concentration
of the eigenstates of the projection operator Re â.

A quadrature distribution can be obtained experimen-
tally by means of the homodyne detection [31]. In prin-
ciple, this distribution can have oscillations of quantum
origin. The probability density of the eigenvalue of the
quadrature operator Q̂ in the number state |n〉,

ΦQS (Q|n) = 〈Q|n〉2, (3.10)

has such oscillations. Whereas the formula (3.10) describes
a separate measurement of a quadrature, a simultaneous
measurement of canonically conjugate quadratures leads
to the probability density [32,33]

ΦQA(Q|n) =
1

2

∫ ∞
−∞

ΦQPA

(
Q

2
+ iy

∣∣∣n) dy, (3.11)

where the quasidistribution related to the antinormal or-
dering of the annihilation and creation operators

ΦQPA (α|n) =
1

πn!
|α|2n exp(−|α|2), (3.12)

which becomes

ΦQA(Q|n) =
1
√
π

(−1)n
1

22n+1

× exp

(
−
Q2

4

)
L
−n− 1

2
n (Q2), (3.13)

with the Laguerre polynomials,

Lγn(x) = Γ (n+ γ + 1)

×
n∑
j=0

(−x)j

j!(n− j)!Γ (j + γ + 1)
· (3.14)

The comparison of the distributions of a quadrature in
the number states resulting from the measurement of the
appropriate operator and from the procedure of the si-
multaneous measurement of this operator and the appro-
priate conjugate one can be accomplished according to
Figures 1 and 2. The probability densities ΦQS (Q|n) in
Figure 1 exhibit quantum oscillations between two qua-
siclassical maxima tracing two arcs of a parabola. In the
case of the probability densities ΦQA(Q|n), the oscillatory
behaviour is smoothed out, as can be seen in Figure 2,
by comparison with Figure 1 keeping a fixed n. Taking
into account the probabilistic meaning of (3.11) and the
graphic properties of the quasidistribution (3.12), we may

obtain a picture of the probability density ΦQA(Q|n) on
the quasiclassical grounds. The peaks of this distribution
are situated at about Q = 2

√
n, for |Q| larger the proba-

bility density of the quadrature is negligibly small and it
is almost uniform between the peaks for n large enough
(n & 15).

In any case, when the diagonalization of the oper-
ator resorts to a continuous projection-valued density,

Fig. 1. The probability densities of the position-like quadra-
ture in the number state |n〉 with n = 0, 1, . . . , 20.

Fig. 2. The probability densities of the position-like quadra-
ture in the number state |n〉 with n = 0, 1, . . . , 50. A joint
measurement of the position-like and momentum-like quadra-
tures is assumed.

a substitution of the eigenvalue must be completed with
a multiplication of the density by a positive factor. In the
review article of Carruthers and Nieto [4], the states de-
noted as eigenstates of the cosine or sine operators are
rather the eigenstates of cos−1(Ĉ), sin−1(Ŝ) according to
their Dirac normalization, whereas in the communication
of D’Ariano and Paris [24] the genuine eigenstates of the

operator Ĉ are studied. The expansion of eigenstates |C〉
of Ĉ in terms of the number states,

|C〉 =
∞∑
n=0

〈n|C〉|n〉, (3.15)

where

〈n|C〉 =

√
2

π

4
√

1− C2 Un(C), C ∈ [−1, 1], (3.16)
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involves the Chebyshev polynomials of the second kind
(x = C),

Un(x) =
sin[(n+ 1) cos−1 x]

sin(cos−1 x)
· (3.17)

These are known to be the orthogonal polynomials with
respect to the weight

〈C|n = 0〉2 =
2

π

√
1− C2, C ∈ [−1, 1]. (3.18)

The coefficients in the series (3.15) are equal to the cosine
representation for the number states

〈C|n〉 =

{
〈n|C〉 for C ∈ [−1, 1],

0 for C ∈ [−1, 1].
(3.19)

In (3.15) we have not introduced |C〉 = 0 for C ∈ [−1, 1],
the null vector, which does not describe a state of any
physical system. The representation of the eigenstates |S〉
of Ŝ is derived using the property

|S〉 = in̂|C = S〉. (3.20)

The states |C〉, |S〉 have the orthogonality property,

〈C|C′〉 = δ(C − C′), 〈S|S′〉 = δ(S − S′), (3.21)

where C,C′, S, S′ ∈ (−1, 1).
The philosophy of the Pegg-Barnett formalism expects

the same phase distribution in all number states and it
excludes that the cosine representation of a Fock state
depends on the photon number. Nevertheless, the proba-
bility densities of the eigenvalue of the cosine operator Ĉ
in the number state |n〉,

ΦCS (C|n) = 〈C|n〉2, (3.22)

are distinct. The canonical probability density of the
eigenvalue of the cosine operator does not depend on the
photon number,

ΦCA(C|n) =


1

π

1
√

1− C2
for |C| < 1,

0 for |C| > 1.
(3.23)

Figure 3 demonstrates that the Susskind-Glogower proba-
bility density can oscillate about the canonical probability
density. In the Pegg-Barnett system it is interesting that
for C → ± 1 the probability density is large. In the
case of the Susskind-Glogower manifestly quantal cosine
probability density, this quasiclassical property is reflected
by peaks starting with n = 1. We consider the Pegg-
Barnett system more quasiclassical, because it enables co-
sine and sine to be measured simultaneously. Whereas the
U -shape in the framework of the Pegg-Barnett formalism
is of quasiclassical character, the oscillations are of a man-
ifest quantum origin.

As the states |Q〉, |P 〉, |C〉, |S〉 fall outside the Hilbert
space, although we know they can at least be expanded in

Fig. 3. The properties of the cosine probability density in
the number state with n = 10: the Susskind-Glogower versus
Pegg-Barnett prediction.

the number state basis, the computation with them can be
pleasant and sure only with some ingredient of “physically
preparable” states [20]. Interpreting the orthogonality re-
lations (3.9, 3.21) for these states as the representations
of the states |Q′〉, |P ′〉, |C′〉, |S′〉 in the |Q〉-, |P 〉-, |C〉-,
|S〉-bases, respectively, we observe that the lack of a regu-
lar element on the left-hand sides leads to the generalized
function on the right-hand sides.

The scalar product

〈Q|P 〉 =
1

2
√
π

exp

(
i
QP

2

)
, (3.24)

which may also be interpreted as the wave function of
the state |P 〉, is a regular function, but it is not square
integrable. A standard expression

|〈Q|P 〉|2 =
1

4π
(3.25)

does not yield a probability density of the quadrature Q in
the state |P 〉, although its constancy reflects the fact that

the quadrature operators Q̂, P̂ are canonically conjugate.
Of course, any suitable truncation of the Hilbert space
|Q〉-basis leads to a replacement of (3.25) by a uniform
probability distribution in a regularized state |P 〉reg.

To derive the analogue of (3.24), we use the relation

|C〉 =
1

i 4
√

1− C2
[exp(iϕ)|ϕ〉 − exp(−iϕ)| − ϕ〉] , (3.26)

where

ϕ = cos−1C, C ∈ [−1, 1]. (3.27)

In the course of computation, we use the relation (2.6)
supplemented with the property

Im〈ϕ|ϕ′〉 = −
1

4π
Pϕcot

(
ϕ− ϕ′

2

)
. (3.28)

Hence the phase representation of the phase state |ϕ′〉
has the imaginary part, which is also a generalized func-
tion. Here Pϕ (principal value) means that this generalized
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function is the limit of the cotangent function, which has
been replaced by zero in symmetrical neighbourhoods of
ϕ = ϕ′ (mod 2π). It can be found easily that the repre-
sentation of the sine state |S〉 in the cosine basis reads

〈C|S〉 =
4
√

1− C2 4
√

1− S2

[
−

1

π
PC

1

C2 + S2 − 1

+i sgn(CS)δ(C2 + S2 − 1)

]
, (3.29)

where PC relates to the singularities C = ±
√

1− S2. Sim-
ilarly as in (3.19), the representation of the sine state |S〉
in the cosine basis,

〈C|S〉 = 0 for C ∈ [−1, 1], S ∈ [−1, 1]. (3.30)

The “unphysical features,” in fact quantum oscillations, of
the probability distribution of the Susskind-Glogower co-
sine operator for number states [24] can be compared with
the shape of the probability distribution of the quadrature
operator for these states. The peculiar quantum statis-
tics are avoided adopting a joint measurement of the two
quadratures similarly as the canonical phase probability
distribution defines satisfactorily a joint distribution of
quantum cosine and sine.

Regarding the relation (2.2), we have remarked that
the phase states are not the only eigenstates of the expo-
nential phase operator. In fact, the normalized eigenstates
of the exponential phase operator can be obtained by a
regularization,

|ρeiϕ〉 =
√

1− ρ2ρn̂|ϕ〉, 0 ≤ ρ < 1, (3.31)

ensuring that the eigenvalue equation (2.18) is fulfilled.
Hence, the coherent phase states are regularized phase
states. The formula (3.31) is a good motivation for the
limit expressions

〈C|S〉 = lim
q↗1
〈C|qn̂|S〉, (3.32)

= lim
q↗1

(
〈C|qn̂|S〉

)
appr

, (3.33)

where(
〈C|qn̂|S〉

)
appr

=

−
1

π

√
sinϕ cosϕ′

cos2 ϕ+ sin2 ϕ′ − 1 + i(1− q2) cosϕ sinϕ′
, (3.34)

with ϕ connected to C by (3.27) and ϕ′ connected to S
by the relation

ϕ′ = sin−1S. (3.35)

After an easy algebraic manipulation and using the fact
that

lim
q↗1

1

π

(1− q2)CS

(C2 + S2 − 1)2 + (1− q2)2(CS)2
=

sgn(CS)δ(C2 + S2 − 1), (3.36)

lim
q↗1

C2 + S2 − 1

(C2 + S2 − 1)2 + (1− q2)2(CS)2

= PC
1

C2 + S2 − 1
, (3.37)

we arrive again at the relation (3.29). Let us denote

w(C,C′, z) = 〈C|zn̂|C′〉, (3.38)

=
2

π

(1−z2) 4
√

1−C2 4
√

1−C′2

(1−z2)2−4z(1+z2)CC′+4z2(C2+C′2)
,

(3.39)

so that in (3.32)

〈C|qn̂|S〉 = w(C,S, iq). (3.40)

The regularized expression

|S〉reg =
1√

w(S, S, q2)
qn̂|S〉 (3.41)

enables us to study a consolidation of the Pythagorean
theorem in the probability density

ΦCS (C|S, q) = |〈C|S〉reg |
2, (3.42)

where

|〈C|S〉reg|
2 =
|w(C,S, iq)|2

w(S, S, q2)
· (3.43)

In fact,

lim
q↗1
|〈C|S〉reg|

2 =
1

2
δ(C −

√
1− S2)

+
1

2
δ(C +

√
1− S2), (3.44)

=
√

1− S2δ(C2 + S2 − 1). (3.45)

The probability densities (3.42) are distributions of the
quantum cosine in the Susskind-Glogower sine states,
which are regularized by a qn̂ nonunitary transformation,
which sends an improper phase state into a coherent phase
state. To the extent that is possible to infer the proper-
ties of a Hilbert space vector from a distribution, we see
that the sine state involves cosine components fulfilling
the usual trigonometric relation. These components are
two:±

√
1− S2. Although the formula (3.44) is much more

complicated than (3.25), there is a reminder of canonical
conjugation. It holds that

ΦCS

(√
1− S2

∣∣∣S, q) = ΦCS

(
−
√

1− S2
∣∣∣S, q) , (3.46)

which suggests that the two cosine components are equally
probable.

The behaviour of the probability density (3.42) for
different values of q is pictorialized in Figures 4–6. For
S = ±1/

√
2 we observe that the cosine distribution has

two humps, which sharpen into two peaks at C = ±1/
√

2
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Fig. 4. The cosine probability density in the regularized eigen-
state of the Susskind-Glogower sine operator for S ∈ (−1, 1)
and for the regularization parameter q = 0.85.

Fig. 5. The same as in Figure 4, but for q = 0.9.

Fig. 6. The same as in Figure 4, but for q = 0.95.

with increasing q. The uniform value of q with respect to
S does not mean equal regularization with respect to S as
formalized by the formula

ΦCS (±
√

1− S2|S, q) '
1

π|S|(1− q2)
for q ↗ 1. (3.47)

At least for |S| small, we can see that the humps are sharp-
ening. This may be connected with the effect of a barrier
pressing for S close to zero. Although the probability den-
sity is not well-defined for S = ±1, we see a similar press-
ing effect about C = 0 for S tending to ±1. From all the
figures in the limit of q large, we see that the locus of the
maxima of the probability density tends to be the circle
C2 + S2 = 1.

4 Quasidistributions for quantum cosine
and sine

Sometimes it is necessary to determine a joint (k + l)th-

order moment of the quantities Â and B̂, where Â and
B̂ are still arbitrary operators and k is the partial degree
of Â and l is the partial degree of B̂. Fortunately, the
physical problem itself usually determines the so-called
operator ordering, which is not limited to the cases ÂkB̂l

or B̂lÂk. For example, it is possible to consider the sym-
metrical expression (1/2)(ÂkB̂l + B̂lÂk), but the famous
Weyl ordering cannot be characterized by such a simple
formula, because it is based on the principle of a by far
deeper symmetrization [34]. The literature is not very rich
on the applications of the Weyl ordering to the operators
different from the position coordinate and momentum op-
erators or the quadrature operators. An observation of
the Weyl ordering of the Susskind-Glogower cosine and
sine operators is comprised in [35], where q-deformation
has been considered. An attempt to analyze the Weyl cor-
respondence in the case of number and momentum-like
quadrature operators has been made [36].

In this section we intend to introduce the quasidistri-
butions of eigenvalues of the cosine and sine operators.
To this end we use the method of quantum characteristic
function as outlined in [34].

The analogy between the operators â, â†, (1/2)Q̂,

(1/2)P̂ on the one hand and the operators Ê−, Ê+, Ĉ,

Ŝ on the other hand has been so far going that it sug-
gests the terms standard and antistandard orderings for
the operators Ĉ, Ŝ and the terms normal and antinormal
orderings for the operators Ê−, Ê+, although they have

been coined for the operators (1/2)Q̂, (1/2)P̂ , â, â† origi-
nally (cf. [37]).

Let us remark that there are also limitations to this
analogy. The difference between the normal and antinor-
mal orderings of the operators â, â† is relatively small for
the large-amplitude states, but it is absolutely present ac-
cording to the commutation relation [â, â†] = 1̂. However,
the difference between the normal and antinormal order-
ings of the operators Ê−, Ê+ is absolutely small for the
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large-amplitude states as follows from (2.14) and is indi-
cated by equation (6.9) in [38].

To establish the notation and to illustrate the relation-
ship of a quantum characteristic function to a quasidistri-
bution, we assume that ΦCS(C+iS) is a quasidistribution,∫ ∞

−∞

∫ ∞
−∞

ΦCS(C + iS) dC dS = 1. (4.1)

We introduce the corresponding characteristic function as

CCS
(
−
τ

2
+ i

θ

2

)
=

F
[
ΦCS(C + iS)

](
−
τ

2
+ i

θ

2

)
, (4.2)

where the Fourier transform

F
[
ΦCS(C + iS)

](
−
τ

2
+ i

θ

2

)
=∫ ∞

−∞

∫ ∞
−∞

exp(iθC + iτS)ΦCS(C + iS) dC dS. (4.3)

The quasidistribution can be obtained as

ΦCS(C + iS) =

F−1

[
CCS

(
−
τ

2
+ i

θ

2

)]
(C + iS), (4.4)

where

F−1

[
CCS

(
−
τ

2
+ i

θ

2

)]
(C + iS)

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞

exp(−iθC − iτS)CCS
(
−
τ

2
+ i

θ

2

)
dθ dτ.

(4.5)

The method of the quantum characteristic function is
based on the use of the formulae (4.4, 4.5) as the defining
relations. In principle, this is possible when the quasidis-
tribution is given as an average (here a quantum aver-
age (4.12) below).

Let us address the quasidistributions related to the
standard and antistandard orderings of the cosine and sine
operators. The procedure of derivation of these quasidis-
tributions is especially simple, but in connection with this
the result is not very impressive, because the quasidistri-
butions retain the phase factors in a somewhat inconve-
nient way. This procedure does not succeed in combining
the phase factor of the cosine and sine representations, so
that the resulting function could be real. Introducing the
operators

D̂CS
st

(
−
τ

2
+ i

θ

2

)
= exp(iθĈ) exp(iτŜ), (4.6)

D̂CS
antist

(
−
τ

2
+ i

θ

2

)
= exp(iτŜ) exp(iθĈ), (4.7)

we may define the standard characteristic function

CCSst

(
−
τ

2
+ i

θ

2

)
= Tr

{
ρ̂D̂CS

st

(
−
τ

2
+ i

θ

2

)}
(4.8)

and the antistandard characteristic function

CCSantist

(
−
τ

2
+ i

θ

2

)
= Tr

{
ρ̂D̂CS

antist

(
−
τ

2
+ i

θ

2

)}
,

(4.9)

where ρ̂ is the statistical operator to be represented by the
quasidistribution. Quite generally, we apply the prescrip-
tion (4.4) in the domain of operators and we arrive at the
operator-valued density

Φ̂CS(C + iS) = F−1

[
D̂CS

(
−
τ

2
+ i

θ

2

)]
(C + iS).

(4.10)

Still generally, a subsequent use of (4.4) to the scheme

CCS
(
−
τ

2
+ i

θ

2

)
= Tr

{
ρ̂D̂CS

(
−
τ

2
+ i

θ

2

)}
(4.11)

leads to the rule

ΦCS(C + iS) = Tr
{
ρ̂Φ̂CS(C + iS)

}
. (4.12)

Now, the standard and antistandard orderings are pleas-
ant, because [34,39]

Φ̂CSst (C+iS)= |C〉〈C|S〉〈S|, (4.13)

= 〈C|S〉|C〉〈S| forC,S∈ [−1, 1], (4.14)

Φ̂CSantist(C+iS)= |S〉〈S|C〉〈C|, (4.15)

= 〈S|C〉|S〉〈C| forC,S∈ [−1, 1], (4.16)

Φ̂CSst (C+iS)= Φ̂CSantist(C+iS)=0̂

forC orS ∈ [−1, 1]. (4.17)

From the formulae (4.14, 4.16) and the rule (4.12) it is ob-
vious that these quasidistributions in a physically prepara-
ble state have the form

ΦCSst (C + iS) = 〈C|S〉〈S|ρ̂|C〉, (4.18)

ΦCSantist(C + iS) = 〈S|C〉〈C|ρ̂|S〉; (4.19)

here in the sense of (3.30) the regular functions 〈S|ρ̂|C〉
and 〈C|ρ̂|S〉 vanish for C or S ∈ [−1, 1], and 〈C|S〉, 〈S|C〉
are generalized functions.

The reconstruction of the original statistical operator
is possible according to the scheme

ρ̂ =

∫ ∞
−∞

∫ ∞
−∞

ΦCS(C + iS)∆̂CS(C + iS) dC dS. (4.20)

In the case of the standard and antistandard orderings,
we can use

∆̂CS
st (C + iS) = −π

C2 + S2 − 1
4
√

1− C2 4
√

1− S2
|S〉〈C|

forC,S ∈ [−1, 1], (4.21)
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∆̂CS
antist(C + iS) = −π

C2 + S2 − 1
4
√

1− C2 4
√

1− S2
|C〉〈S|

forC,S ∈ [−1, 1]. (4.22)

The formulae (4.21, 4.22) comprise a regularizing factor,
which makes unity with the scalar product (3.29). Because
obviously (cf. (4.12, 4.17)),

ΦCSst (C + iS) = ΦCSantist(C + iS) = 0,

C or S ∈ [−1, 1], (4.23)

it is natural to take the integrals in (4.20) within the limits
−1, 1 and the definitions (4.21, 4.22) are sufficient.

Profiting from the importance of the normal ordering
of the annihilation and creation operators for bosons and
fermions in quantum field theory and in quantum optics,
we relate this term also to the exponential phase opera-
tors. We introduce the operator

D̂CS
N

(
−
τ

2
+ i

θ

2

)
= exp

(
−τ + iθ

2
Ê+

)
× exp

(
τ + iθ

2
Ê−

)
. (4.24)

Expanding the exponential functions in (4.24) in Taylor

series and expressing the operator product Êk+Ê
l
− in the

number state basis, we arrive at

D̂CS
N

(
i
ρ′

2
eiψ
)

=
∞∑
n=0

∞∑
m=0

exp[iψ(n−m)](−1)n−m

×
m∑
k=0

(−1)k

k!Γ (k + n−m+ 1)

(
ρ′

2

)2k+n−m

|n〉〈m|, (4.25)

where

ψ = arg(θ + iτ),

ρ′ =
√
θ2 + τ2. (4.26)

From the rule (4.10), we obtain the operator-valued den-
sity

Φ̂CSN (C+iS) =
1

√
1−C2−S2

∞∑
n=0

∞∑
m=0

1

n!m!

[
−

∂

∂(C−iS)

]n
×

[
ψ −

∂

∂(C + iS)

]m
δ(C + iS)|n〉〈m| (4.27)

or

Φ̂CSN
(
ρeiϕ

)
=

1

πρ
√

1− ρ2

∞∑
n=0

∞∑
m=0

1

(n+m)!

× exp[i(n−m)ϕ]

(
−
∂

∂ρ

)n+m

δ(ρ)|n〉〈m|. (4.28)

Next we obtain the normal characteristic function accord-
ing to (4.11) for any statistical operator ρ̂. Particularly for
the coherent phase state |C + iS〉, we get

CCSN

(
−
τ

2
+ i

θ

2

∣∣∣∣C + iS

)
= exp(iθC + iτS) (4.29)

and from (4.4) we obtain

ΦCSN (C + iS|C + iS) = δ(C + iS − C − iS), (4.30)

where δ(z) is the Dirac delta function of the complex
variable z. In general, taking into account the prescrip-
tion (4.12), we arrive at the appropriate quasidistribution

ΦCSN (C + iS) =
1

√
1− C2 − S2

∞∑
n=0

∞∑
m=0

ρmn
1

n!m!

×

[
−

∂

∂(C − iS)

]n [
−

∂

∂(C + iS)

]m
×δ(C + iS) (4.31)

=
1

πρ
√

1− ρ2

∞∑
n=0

∞∑
m=0

ρmn
1

(n+m)!

× exp[i(n−m)ϕ]

(
−
∂

∂ρ

)n+m

δ(ρ). (4.32)

It is easy to see that this quasidistribution enables one
to obtain the diagonal representation of any statistical
operator

ρ̂ =

∫ ∫
C

2
+S

2
<1

Φ(C + iS)

× |C + iS〉〈C + iS| dC dS, (4.33)

where Φ(C+iS) is a distribution confined to the interior of
the unit disc. In this case, the normal characteristic func-
tion is given by (4.2), where ΦCS(C+ iS) is replaced with
Φ(C + iS). It follows that the normal quasidistribution

ΦCSN (C + iS) =

{
Φ(C + iS) for C2 + S2 < 1,

0 elsewhere.
(4.34)

Another consequence of the foregoing analysis is that

∆̂CS
N (C + iS) = |C + iS〉〈C + iS|

for C2 + S2 < 1, (4.35)

should be used in the reconstruction scheme (4.20). It is
also natural to suit the integration domain of (4.20) to
that of (4.33).

Let us dwell for a while on how to use the new quasidis-
tributions to derive the usual phase probability density.
Considering a 2π-periodic version of (2.10), we have

P (ϕ) = 〈ϕ|ρ̂|ϕ〉. (4.36)

Respecting the scheme (4.20), we obtain that

P (ϕ) =

∫ ∞
−∞

∫ ∞
−∞

ΦCS(C + iS)

× 〈ϕ|∆̂CS(C + iS)|ϕ〉 dC dS

=

∫ θ0+2π

θ0

∫ ∞
0

ΦCS(ρeiϕ)

× 〈ϕ|∆̂CS(ρeiϕ)|ϕ〉 ρ dρ dϕ. (4.37)
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In the case of the normal ordering, the kernel of the inte-
gral expression (4.37) reads

〈ϕ|∆̂CS
N (ρeiϕ)|ϕ〉 =

∣∣〈ϕ|ρeiϕ〉∣∣2
=

1

2π

1− ρ2

1− 2ρ cos(ϕ− ϕ) + ρ2 · (4.38)

So the assumption that the state is a mixture of the co-
herent phase states (4.33) leads to a determination of the
phase probability distribution as the mixture of the prob-
ability distributions (4.38).

In the framework of the normal ordering of the ex-
ponential phase operators, the undesirable properties of
the Susskind-Glogower cosine and sine operators are il-
lustrated with the convenient properties of the coherent
phase states. Using these states, we always achieve the vi-
olation of the unit circle property (the usual trigonomet-
ric identity). In fact, the quasidistribution of the cosine
and sine of the phase is supported by the whole unit disc,
cf. (4.34). Although the mean photon number of the co-
herent phase states may achieve arbitrarily large values,
so that these states may be arbitrarily far from the origin
in a usual phase-space description, their normal and sym-
metrical quasidistributions are confined to the interior of
the unit disc, when the ordering of the exponential phase
operators is performed.

The antinormal ordering of the exponential phase
operators has been repeatedly treated in the literature
[6,22,23,27]. Since in this work there was no generating
function for the antinormally ordered monomial operators,
we introduce the operator

D̂CS
A

(
−
τ

2
+i

θ

2

)
=exp

(
τ+iθ

2
Ê−

)
× exp

(
−τ+iθ

2
Ê+

)
. (4.39)

It holds that [6,40]

D̂CS
A

(
−
τ

2
+ i

θ

2

)
=∫ θ0+2π

θ0

exp(iθ cosϕ+ iτ sinϕ)|ϕ〉〈ϕ| dϕ. (4.40)

Such Toeplitz operators (with respect to the number state
basis) can be expanded in terms of the exponential phase
operators

D̂CS
A

(
i
ρ′

2
eiψ
)

=
∞∑

k=−∞

exp(ikψ)ikJk(ρ′)

× êxp(−ikϕ)
∞∑
m=0

|m〉〈m|, (4.41)

=
∞∑
n=0

∞∑
m=0

exp[iψ(n−m)]

× in−mJn−m(ρ′)|n〉〈m|, (4.42)

where ψ and ρ′ are defined in (4.26). From the rule (4.10)
in polar coordinates and using the orthogonality property
of Bessel functions, we obtain the operator-valued density

Φ̂CSA (C + iS) = 2δ(C2 + S2 − 1)

× |ϕ = arg(C + iS)〉〈ϕ = arg(C + iS)| (4.43)

or

Φ̂CSA (ρeiϕ) = 2δ(ρ2 − 1)|ϕ〉〈ϕ|. (4.44)

According to the formulae (4.12, 4.44), we obtain the
quasidistribution for the antinormally ordered exponen-
tial phase operators

ΦCSA
(
ρeiϕ

)
= 2δ(ρ2 − 1)〈ϕ|ρ̂|ϕ〉, (4.45)

= 2δ(ρ2 − 1)P (ϕ). (4.46)

Particularly, in the coherent phase state |ρeiϕ〉,

ΦCSA
(
ρeiϕ

∣∣ ρeiϕ) =

1

π
δ(ρ2 − 1)

1− ρ2

1− 2ρ cos(ϕ− ϕ) + ρ2 · (4.47)

Using the properties of the Dirac delta function

δ(ρ2 − 1) =
1

2
[δ(ρ− 1) + δ(ρ+ 1)],∫ ∞

0

ρδ(ρ+ 1) dρ = 0, (4.48)

we can verify that the generalized function (4.46) is a qua-
sidistribution,∫ ∞
−∞

∫ ∞
−∞

ΦCSA (C + iS) dC dS =∫ θ0+2π

θ0

∫ ∞
0

ΦCSA
(
ρeiϕ

)
ρ dρ dϕ = 1. (4.49)

No embodiment of the scheme (4.20) exists, because
the state of the physical system cannot be determined
completely by the mere phase properties. For the large-
amplitude states [38], the scheme (4.20) is not expected
to operate well even for the normal and symmetrical or-
derings of the exponential phase operators.

5 Quantal-classical correspondence
in the Wigner-Weyl sense

We were beyond the schemes according to [34] with the
normal and antinormal orderings and only now we intro-
duce the operator

D̂CS
S

(
−
τ

2
+ i

θ

2

)
= exp(iθĈ + iτŜ). (5.1)

The generating function (5.1) of symmetrically ordered

monomials in the operators Ê−, Ê+ admits a dynamical
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∫ ∞
0

in−mJn−m(−ρ′ρ)
[
−in+m+2Jn+m+2(ρ′) + in−mJn−m(ρ′)

]
ρ′ dρ′ =

{
2(n+ 1)ρn−mR

(1,n−m)
m (ρ2) for ρ < 1,

0 for ρ > 1,
(5.6)

Φ̂CSS (C + iS) =
1

π

∞∑
n=0

(n+ 1)
n∑

m=0

(C + iS)n−mR(1,n−m)
m (C2 + S2)|n〉〈m|

+
1

π

∞∑
m=0

(m+ 1)

m−1∑
n=0

(C − iS)m−nR(1,m−n)
n (C2 + S2)|n〉〈m| for C2 + S2 < 1, (5.8)

Φ̂CSS (C + iS) = 0̂ for C2 + S2 > 1. (5.9)

ΦCSS (C + iS) =
1

π

∞∑
n=0

(n+ 1)

n∑
m=0

ρmn(C + iS)n−mR(1,n−m)
m (C2 + S2)

+
1

π

∞∑
m=0

(m+ 1)

m−1∑
n=0

ρmn(C − iS)m−nR(1,m−n)
n (C2 + S2) for C2 + S2 < 1, (5.10)

ΦCSS (C + iS) = 0 for C2 + S2 > 1, (5.11)

interpretation. This approach has been adopted in [41] and
new states have been produced from the vacuum state us-
ing this unitary operator. Also the production of states
from any given number state |m〉 has been described.
The coefficients of the number-state representations are
just the matrix elements of our operator generating func-
tion (5.1). The occurrence of the Bessel functions is remi-
niscent of the phase optimized states in [42]. In [41] it has
been advertised that a suitable interaction could suppress
a specific number-state component.

Using the property

D̂CS
S

(
−
τ

2
+ i

θ

2

)
=

exp(iψn̂)D̂CS
S

(
i
ρ′

2

)
exp(−iψn̂), (5.2)

where ψ and ρ′ are defined in (4.26), we eliminate the sine
operator from (5.1) and observe that

D̂CS
S

(
i
ρ′

2

)
=

∫ π

0

exp(iρ′ cosϕ)| cosϕ〉〈cosϕ| dϕ. (5.3)

Here [4]

| cosϕ〉 =
√

sinϕ |C = cosϕ〉

=

√
2

π

∞∑
n=0

sin[(n+ 1)ϕ]|n〉. (5.4)

Performing the indicated integration, we get the expansion
in the number state basis

D̂CS
S

(
i
ρ′

2
eiψ
)

=
∞∑
n=0

∞∑
m=0

exp[iψ(n−m)]

×
[
−in+m+2Jn+m+2(ρ′) + in−mJn−m(ρ′)

]
|n〉〈m|. (5.5)

From the rule (4.10) using the formula

see equation (5.6) above

with R
(α,β)
m (x) the shifted Jacobi polynomials [43],

R(α,β)
m (x) =

(−1)m

m!
(1− x)−αx−β

×
dm

dxm
[
(1− x)α+mxβ+m

]
, (5.7)

we obtain the operator-valued density

see equations (5.8, 5.9) above.

On substituting (5.8, 5.9) into (4.12), we obtain the
Wigner function for the cosine and sine operators as

see equations (5.10, 5.11) above

where

ρmn = 〈m|ρ̂|n〉. (5.12)

From the formulae (4.11, 5.1, 5.2) we can see that the to-
tality of characteristic functions of the rotated Susskind-
Glogower cosine operators present the required quantum
characteristic function in analogy with the reconstruction
principle of Vogel and Risken [44]. Accordingly, we can
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develop the optical ideal tomography based on distribu-
tions of rotated Susskind-Glogower cosine operators. Ide-
ally it is possible, we have in our mind the optical ho-
modyne tomography, where the attribute homodyne is
replaced by ideal, i.e., we assume that instead of the
rotated quadrature distributions the data on the ro-
tated Susskind-Glogower cosine distributions should be
acquired. Till now, no experiment is directly described
by these operators. Interestingly enough, the reconstruc-
tion of the Susskind-Glogower cosine distribution has been
published based, of course, on the rotated quadrature dis-
tributions [45]. Our distribution of the cosine of phase
is confined in the interval [−1, 1], whereas the Susskind-
Glogower “cosine” phase distribution is supported by the
interval [0, π], it is just the distribution of the inverse co-
sine of the Susskind-Glogower cosine operator. Starting
with this analogy, we can reveal the similarities as, for
example, that the Gaussian formula for the Glauber co-
herent state has a Poisson-like formula for the coherent
phase state as its counterpart. It may be interesting, be-
cause in spite of our obtaining this formula by algebraic
manipulations, the original idea is based on the tomogra-
phy and the numerical simulation can be carried out.

As an illustration, we have plotted the Wigner function
for the cosine and sine operators in a coherent phase state
and in a thermal state. The coherent phase state,

ρ̂pcoh = |ρeiϕ〉〈ρeiϕ|, (5.13)

with the ket defined in (3.31), is an ideal one in the single
mode space, but it has the photon number distribution of a
thermal state, which is a realistic one. We obtain this iden-
tity on equating ρ2 = n/(n+ 1), where n = Tr{ρ̂thn̂}, ρ̂th
being the thermal state. Using the formula for the gener-
ating function of the Jacobi polynomials [46], we obtain
the Wigner function (5.10) for the coherent phase state

ΦCSS (C + iS) ≡ ΦCSS
(
ρ eiϕ

∣∣ ρeiϕ)
=

1− ρ2

π

1[
1 + ρ2 − 2ρρ cos(ϕ− ϕ)

]2
(5.14)

and for the thermal state

ΦCSS (C + iS) ≡ ΦCSS (C + iS|n)

=
1

4π

(
n+ 1

2

)
(n+ 1)[(

n+ 1
2

)2
− n(n+ 1)(C2 + S2)

]3
2

for C2 + S2 ≤ 1. (5.15)

The graph of (5.15, 5.11) in Figure 7 is rotationally invari-
ant, because the thermal state lacks of the phase proper-
ties. The Wigner function attains its “edge” value when
the variable ρ =

√
C2 + S2 is unity. That is why the graph

is cup like. The tendency to prefer the boundary is very
strong, because although n = 1, i.e., the mean photon
number equal to 1 is relatively small, the cup shape is
conspicuous. To facilitate a comparison, we have chosen
n = 1, ρ2 = 1/2.
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Fig. 7. The Wigner function for the cosine and sine operators
in the thermal state with the mean photon number n = 1.
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Fig. 8. The Wigner function for the cosine and sine operators
in the coherent phase state with ρ = 1/

√
2, ϕ = 0.

The coherent phase state has the quasidistribution
such that ρ = 1 is again the edge or peak value, but,
moreover, this state has the preferred phase zero (cf. the
peak at C = 1, S = 0) as illustrated in Figure 8. The fact
that ρ is not certain to be unity, but that the quasidis-
tribution has only the peak values at ρ = 1 is connected
to the choice of the Susskind-Glogower cosine and sine
operators and to their mimicking position coordinate and
momentum operators with their obedience to the comple-
mentarity principle.

The illustrative examples have been performed with
n small, ρ2 � 1, because it can be expected that for
greater values the appropriate quasidistributions approach
the antinormal ones according to (4.46) and the Dirac
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delta function cannot be plotted. The difference between
the orderings consists in the near vacuum contribution,
which is negligible for strong fields except some artificial
examples of superposition states.

The contrast between the symmetrical ordering of the
exponential phase operators and the symmetrical order-
ing of the photon annihilation and creation operators is
very sharp. Returning to the case of thermal state, we can
imagine the graph of the usual Wigner function, which
is rotationally symmetrical, but the maximum is situated
at the origin, |α| = 0. The Wigner function of the coher-
ent phase state with the preferred phase zero is elongated
in the direction of the Re(α) axis, but it has the maxi-
mum near the origin again. As stated above, the Wigner
function for the cosine and sine operators attains rather a
minimum near the origin.

Returning to the definitions (4.6, 4.7, 4.24, 4.39, 5.1),
we find that the standard, antistandard and symmetri-
cal orderings lead to quasidistributions yielding the cosine
and sine distributions as the marginal ones (in the char-
acteristic functions we may substitute τ = 0, θ = 0, re-
spectively). In analogy to the quadrature case, the normal
and antinormal orderings do not enjoy this property.

Let us describe the way in which the Laguerre polyno-
mials enter the exposition of the usual quadrature Wigner
function. This function is defined as

ΦQPS (α) = Tr
{
ρ̂Φ̂QPS (α)

}
, (5.16)

where the Wigner operator

Φ̂QPS (α) =
2

π
(−1)(â†−α∗1̂)(â−α1̂). (5.17)

It is familiar that the inversion of (5.16) is possible,

ρ̂ =

∫
ΦQPS (α)∆̂QP

S (α) d2α, (5.18)

where the operators to be mixed

∆̂QP
S (α) = πΦ̂QPS (α). (5.19)

Arbitrarily small thermalization of (5.19) leads to an op-
erator whose trace exists and is unity.

Let us demonstrate that the useful properties of this
formalism are connected with the orthogonality properties
of the trigonometric and Laguerre polynomials. To this
end, we invoke the mapping theorem

Tr{ρ̂Â} =

∫
ΦQPS (α)A

(S)
QP (α) d2α, (5.20)

where

A
(S)
QP (α) = Tr

{
∆̂QP
S (α)Â

}
, (5.21)

and we sketch a proof of its validity. In (5.20) we need not
restrict ourselves to ρ̂, which are statistical operators. The

operators ρ̂ and Â can be expanded in the bases {|n〉〈m|},
{|n〉〈m|}, respectively. Now we put

ρ̂ = |n〉〈m|,

Â = |n〉〈m|, (5.22)

and we obtain from (5.20) that

I ≡

∫
〈m|Φ̂QPS (α)|n〉〈m|∆̂QP

S (α)|n〉 d2α

= δmnδmn, (5.23)

where we have denoted the left-hand side by I for later
use. Introducing the polar decomposition

α =

√
x

2
eiϕ, (5.24)

taking into account that d2α = (1/8) dxdϕ, the matrix
element

〈m|∆̂QP
S

(√
x

2
eiϕ
)
|n〉 =

exp[i(m− n)ϕ]lnm

(√
x

2

)
, (5.25)

where

lnm

(√
x

2

)
=


2(−1)n

√
n!
m! (
√
x)m−nLm−nn (x) exp

(
−x2
)

form ≥ n,

lmn

(√
x

2

)
for m ≤ n,

(5.26)

and the similar expression for 〈m|Φ̂QPS (
√
x/2)|n〉, we see

that

I =

 Im−n,m−n I
QP
n,m|m−n for m ≥ n,

Im−n,m−n I
QP
m,n|n−m for m ≤ n.

(5.27)

Here the integrals

Im−n,m−n =
1

2π

∫ 2π

0

exp[i(m− n+m− n)ϕ] dϕ

= δm−n,n−m (5.28)

and

IQPn,m|m−n = (−1)n−m
√
n!m!

m!n!

∫ ∞
0

xm−ne−x

× Lm−nn (x)Lm−nm (x) dx = δmn. (5.29)

Similarly,

IQPm,n|n−m = δmn. (5.30)

Quite generally, the operators ρ̂ and Â are algebraic sums
of the transition operators (5.22), so the mapping theo-
rem (5.20) is proven.
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Now we verify that the embodiment of the
scheme (4.20) has the form

ρ̂ =

∫ ∫
C2+S2≤1

ΦCSS (C + iS)

× ∆̂CS
S (C + iS) dC dS, (5.31)

where the operator

∆̂CS
S (C + iS) =

∞∑
n=0

∞∑
m=0

unm(C2 + S2)

× 〈n|Φ̂CSS (C + iS)|m〉|n〉〈m|, (5.32)

with

unm(C2 + S2) = π
(n+m+ 1)

(n+ 1)(m+ 1)
(1− C2 − S2). (5.33)

Equivalently, we verify the mapping theorem

Tr{ρ̂Â} =

∫ ∫
C2+S2≤1

ΦCSS (C + iS)

×A(S)
CS(C + iS) dC dS, (5.34)

where

A
(S)
CS(C + iS) = Tr

{
∆̂CS
S (C + iS)Â

}
. (5.35)

Using the assumption (5.22), we obtain from (5.34) that

I ≡

∫ ∫
C2+S2≤1

〈m|Φ̂CSS (C + iS)|n〉

× 〈m|∆̂CS
S (C + iS)|n〉 dC dS

= δmnδmn. (5.36)

Performing the substitution

C =
√
x cosϕ

S =
√
x sinϕ, (5.37)

taking into account that dC dS = (1/2) dxdϕ, the matrix
elements

〈m|Φ̂CSS (
√
x cos ϕ,

√
x sin ϕ)|n〉 =

exp[i(m− n)ϕ]rnm(
√
x), (5.38)

where

rnm(
√
x) =

{
1
π

(m+ 1)(
√
x)m−nR

(1,m−n)
n (x) for m ≥ n,

rmn(
√
x) for m ≤ n,

(5.39)

and the appropriate expression for 〈m|∆̂CS
S (C,S)|n〉, we

verify that

I =

{
Im−n,m−n I

CS
n,m|m−n for m ≥ n,

Im−n,m−n I
CS
m,n|n−m for m ≤ n.

(5.40)

Here the integral

ICSn,m|m−n =
(m+ 1)(n+m+ 2)

(m+ 1)

∫ 1

0

(1− x)xm−n

×R(1,m−n)
n (x)R

(1,m−n)
m (x) dx

= δmn. (5.41)

6 Conclusion

We have demonstrated that the five orderings of quadra-
ture operators have their analogues in five orderings of
the Susskind-Glogower cosine and sine operators. We have
introduced the quasidistributions of eigenvalues of the co-
sine and sine operators using the method of ordered quan-
tum characteristic function. Contrary to the usual situa-
tions, also the quasidistributions related to the standard
and antistandard orderings are not regular but general-
ized functions. The support of the quasidistributions re-
lated to these orderings is the unit square and they can
take on imaginary values. Except the antinormal ordering,
all kinds of ordering violate the familiar relation between
cosine and sine of the same angle. Accordingly, the sup-
port of the quasidistributions related to the normal and
symmetrical orderings is the unit disc and the support for
the antinormal ordering is the unit circle. The normal or-
dering of the exponential phase operators imitates that of
the photon annihilation and creation operators up to the
role played by the coherent phase state. A similar role of
the coherent phase state in the antinormal ordering of the
exponential phase operators is absent. The Weyl ordering
of the cosine and sine operators leads to a quasidistribu-
tion whose connection to the number-state basis matrix
elements is mediated by the analogues of the Laguerre
polynomials similarly as the relationship between the co-
sine representation and the coefficients in the Fock state
basis comprises relatives of the Hermite polynomials. The
quasidistributions related to all but the antinormal or-
dering are in correspondence to a physical state. At the
time that the Susskind-Glogower cosine and sine opera-
tors were scorned, because they were not simultaneously
measurable, nobody took into account that at present the
repeated measurement would make the optical homodyne
tomography feasible. If we consider the Susskind-Glogower
cosine operator instead of the quadrature operator in the
homodyne measurement, we obtain another view of the
quantum phase information retrievable via the Susskind-
Glogower cosine and sine operators.

This paper was supported by the internal grant of the Faculty
of Natural Sciences of the Palacký University.
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6. A. Lukš, V. Peřinová, Czech. J. Phys. 41, 1205 (1991).
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